Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Band-Gap Determination of the Native Oxide Capping Quantum Dots by Use of Different Kinds of Conductive AFM Probes: Example of InAs/GaAs Quantum Dots

Identifieur interne : 004657 ( Main/Repository ); précédent : 004656; suivant : 004658

Band-Gap Determination of the Native Oxide Capping Quantum Dots by Use of Different Kinds of Conductive AFM Probes: Example of InAs/GaAs Quantum Dots

Auteurs : RBID : Pascal:10-0408031

Descripteurs français

English descriptors

Abstract

In most of quantum-dot (QD) systems, the electrical behavior of a single QD is directly linked to the native oxide grown on their surface. Obtaining quantitative electrical measurements requires identifying this oxide well, which is not a trivial task. Due to the use of two conductive atomic force microscopy (C-AFM) probes of different behaviors, C-AFM experiments and local electrical measurements allow one to determine the barrier heights at the interface between InAs QD and the native oxide and then to deduce the oxide band gap. In the case of InAs/GaAs QDs, based on our work and on literature results, it may be assumed that the capping oxide is an InAs oxide enriched in indium.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0408031

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Band-Gap Determination of the Native Oxide Capping Quantum Dots by Use of Different Kinds of Conductive AFM Probes: Example of InAs/GaAs Quantum Dots</title>
<author>
<name sortKey="Smaali, Kacem" uniqKey="Smaali K">Kacem Smaali</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Institute for Electronics, Microelectronics and Nanotechnology</s1>
<s2>59652 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Nord-Pas-de-Calais</region>
<settlement type="city">Villeneuve d'Ascq</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>ABBDELILLAH EL HDIY</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>LMEN, Université de Reims Champagne Ardenne</s1>
<s2>51687 Reims</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Champagne-Ardenne</region>
<settlement type="city">Reims</settlement>
</placeName>
<orgName type="university">Université de Reims Champagne-Ardenne</orgName>
</affiliation>
</author>
<author>
<name sortKey="Molinari, Michael" uniqKey="Molinari M">Michael Molinari</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>LMEN, Université de Reims Champagne Ardenne</s1>
<s2>51687 Reims</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Champagne-Ardenne</region>
<settlement type="city">Reims</settlement>
</placeName>
<orgName type="university">Université de Reims Champagne-Ardenne</orgName>
</affiliation>
</author>
<author>
<name sortKey="Troyon, Michel" uniqKey="Troyon M">Michel Troyon</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>LMEN, Université de Reims Champagne Ardenne</s1>
<s2>51687 Reims</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Champagne-Ardenne</region>
<settlement type="city">Reims</settlement>
</placeName>
<orgName type="university">Université de Reims Champagne-Ardenne</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">10-0408031</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0408031 INIST</idno>
<idno type="RBID">Pascal:10-0408031</idno>
<idno type="wicri:Area/Main/Corpus">003F14</idno>
<idno type="wicri:Area/Main/Repository">004657</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0018-9383</idno>
<title level="j" type="abbreviated">IEEE trans. electron devices</title>
<title level="j" type="main">I.E.E.E. transactions on electron devices</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atomic force microscopy</term>
<term>Barrier height</term>
<term>Electrical characteristic</term>
<term>Electrical measurement</term>
<term>Energy gap</term>
<term>Microscope tip</term>
<term>Oxidation</term>
<term>Oxide layer</term>
<term>Quantum dot</term>
<term>Quantum system</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Bande interdite</term>
<term>Microscopie force atomique</term>
<term>Système quantique</term>
<term>Caractéristique électrique</term>
<term>Mesure électrique</term>
<term>Hauteur barrière</term>
<term>Oxydation</term>
<term>Pointe microscope</term>
<term>Point quantique</term>
<term>Couche oxyde</term>
<term>8107T</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In most of quantum-dot (QD) systems, the electrical behavior of a single QD is directly linked to the native oxide grown on their surface. Obtaining quantitative electrical measurements requires identifying this oxide well, which is not a trivial task. Due to the use of two conductive atomic force microscopy (C-AFM) probes of different behaviors, C-AFM experiments and local electrical measurements allow one to determine the barrier heights at the interface between InAs QD and the native oxide and then to deduce the oxide band gap. In the case of InAs/GaAs QDs, based on our work and on literature results, it may be assumed that the capping oxide is an InAs oxide enriched in indium.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0018-9383</s0>
</fA01>
<fA02 i1="01">
<s0>IETDAI</s0>
</fA02>
<fA03 i2="1">
<s0>IEEE trans. electron devices</s0>
</fA03>
<fA05>
<s2>57</s2>
</fA05>
<fA06>
<s2>6</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Band-Gap Determination of the Native Oxide Capping Quantum Dots by Use of Different Kinds of Conductive AFM Probes: Example of InAs/GaAs Quantum Dots</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SMAALI (Kacem)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ABBDELILLAH EL HDIY</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MOLINARI (Michael)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>TROYON (Michel)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute for Electronics, Microelectronics and Nanotechnology</s1>
<s2>59652 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>LMEN, Université de Reims Champagne Ardenne</s1>
<s2>51687 Reims</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>1455-1459</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>222F3</s2>
<s5>354000170430770340</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>20 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0408031</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>I.E.E.E. transactions on electron devices</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In most of quantum-dot (QD) systems, the electrical behavior of a single QD is directly linked to the native oxide grown on their surface. Obtaining quantitative electrical measurements requires identifying this oxide well, which is not a trivial task. Due to the use of two conductive atomic force microscopy (C-AFM) probes of different behaviors, C-AFM experiments and local electrical measurements allow one to determine the barrier heights at the interface between InAs QD and the native oxide and then to deduce the oxide band gap. In the case of InAs/GaAs QDs, based on our work and on literature results, it may be assumed that the capping oxide is an InAs oxide enriched in indium.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07T</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Bande interdite</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Energy gap</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Banda prohibida</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Microscopía fuerza atómica</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Système quantique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Quantum system</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Sistema cuántico</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Caractéristique électrique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Electrical characteristic</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Característica eléctrica</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Mesure électrique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Electrical measurement</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Medida eléctrica</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Hauteur barrière</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Barrier height</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Altura barrera</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Oxydation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Oxidation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Oxidación</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Pointe microscope</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Microscope tip</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Punta microscopio</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Point quantique</s0>
<s5>22</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Quantum dot</s0>
<s5>22</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Punto cuántico</s0>
<s5>22</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Couche oxyde</s0>
<s5>23</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Oxide layer</s0>
<s5>23</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Capa óxido</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>8107T</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fN21>
<s1>263</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004657 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 004657 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:10-0408031
   |texte=   Band-Gap Determination of the Native Oxide Capping Quantum Dots by Use of Different Kinds of Conductive AFM Probes: Example of InAs/GaAs Quantum Dots
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024